Fungal-induced protein hyperacetylation in maize identified by acetylome profiling

نویسندگان

  • Justin W Walley
  • Zhouxin Shen
  • Maxwell R McReynolds
  • Eric A Schmelz
  • Steven P Briggs
چکیده

Lysine acetylation is a key posttranslational modification that regulates diverse proteins involved in a range of biological processes. The role of histone acetylation in plant defense is well established, and it is known that pathogen effector proteins encoding acetyltransferases can directly acetylate host proteins to alter immunity. However, it is unclear whether endogenous plant enzymes can modulate protein acetylation during an immune response. Here, we investigate how the effector molecule HC-toxin (HCT), a histone deacetylase inhibitor produced by the fungal pathogen Cochliobolus carbonum race 1, promotes virulence in maize through altering protein acetylation. Using mass spectrometry, we globally quantified the abundance of 3,636 proteins and the levels of acetylation at 2,791 sites in maize plants treated with HCT as well as HCT-deficient or HCT-producing strains of C. carbonum Analyses of these data demonstrate that acetylation is a widespread posttranslational modification impacting proteins encoded by many intensively studied maize genes. Furthermore, the application of exogenous HCT enabled us to show that the activity of plant-encoded enzymes (histone deacetylases) can be modulated to alter acetylation of nonhistone proteins during an immune response. Collectively, these results provide a resource for further mechanistic studies examining the regulation of protein function by reversible acetylation and offer insight into the complex immune response triggered by virulent C. carbonum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fungal Induced Protein Hyperacetylation Identified by Acetylome Profiling

Lysine acetylation is a key post-translational modification that regulates diverse proteins involved in a range of biological processes. The role of histone acetylation in plant defense is well established and it is known that pathogen effector proteins encoding acetyltransferses can directly acetylate host proteins to alter immunity. However, it is unclear whether endogenous plant enzymes can ...

متن کامل

A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases.

Ustilago maydis is a biotrophic pathogen causing maize (Zea mays) smut disease. Transcriptome profiling of infected maize plants indicated that a gene encoding a putative cystatin (CC9) is induced upon penetration by U. maydis wild type. By contrast, cc9 is not induced after infection with the U. maydis effector mutant Δpep1, which elicits massive plant defenses. Silencing of cc9 resulted in a ...

متن کامل

Transcriptional Profiles Uncover Aspergillus flavus-Induced Resistance in Maize Kernels

Aflatoxin contamination caused by the opportunistic pathogen A. flavus is a major concern in maize production prior to harvest and through storage. Previous studies have highlighted the constitutive production of proteins involved in maize kernel resistance against A. flavus' infection. However, little is known about induced resistance nor about defense gene expression and regulation in kernels...

متن کامل

The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola.

Laser microdissection (LM) offers a potential means for deep sampling of a fungal plant-pathogen transcriptome during the infection process using whole-genome DNA microarrays. The use of a fluorescent protein-expressing fungus can greatly facilitate the identification of fungal structures for LM sampling. However, fixation methods that preserve both tissue histology and protein fluorescence, an...

متن کامل

Induced Acidic chitinase Expression and Scab-Resistant in Wheat Under Field Condition

Fusarium head blight (FHB) caused by Fusarium graminearum is responsible for billions of dollars in agriculture losses. The goal of the present study was evaluation the expression of acidic chitinase, one of PR proteins, in wheat defense response against different FHB induced treatments in 'Falat' as a highly susceptible and 'Sumai3' as a tolerant cultivar. These treatments contained fungi extr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2018